Cache Related Preemption Delay for Set-Associative Caches
Resilience Analysis

Sebastian Altmeyer, Claire Burguière, Jan Reineke

Predator Meeting, Pisa 2010
Context

- Preemptive scheduling
- Cache related preemption delay (CRPD):
 - Impact of preemption on the cache content
 - Overall cost of additional reloads due to preemption

\[T_1 \quad \uparrow \quad T_2 \]

\[\text{□} = \text{CRPD} \]

\[\uparrow = \text{Task Activation} \]
CRPD for set-associative caches - LRU

- CRPD computation:
 - preempted task: Useful Cache Blocks (UCB)
 - preemtping task: Evicting Cache Blocks (ECB)

- CRPD from UCB and ECB:
 - Previous combination overestimates
 \[\Rightarrow\] Some UCBs remain useful under preemption
Useful Cache Block - [Lee et al., 1996]

Definition (Useful Cache Block)

A memory block \(m \) at program point \(P \) is called a useful cache block, if

a) \(m \) may be cached at \(P \)

b) \(m \) may be reused at program point \(P' \) that may be reached from \(P \) with no eviction of \(m \) on this path.

\[
\begin{align*}
\times &= \text{hit} \\
\bigcirc &= \text{miss}
\end{align*}
\]

Cache Content: \([A, B, C, D]\)

\[
\begin{align*}
\text{CRPD}_{\text{UCB}} &= \sum_{s=1}^{c} \text{CRPD}_{\text{UCB}}^{s} \\
\text{CRPD}_{\text{UCB}}^{s} &= \text{BRT} \times \min(|\text{UCB}(s)|, n)
\end{align*}
\]

\(n = \text{associativity} \)

\(\text{BRT} = \text{Block Reload Time} \)
Definition (Useful Cache Block)

A memory block m at program point P is called a useful cache block, if

a) m may be cached at P

b) m may be reused at program point P' that may be reached from P with no eviction of m on this path.

\[\text{CRPD}_{\text{UCB}} = \sum_{s=1}^{c} \text{CRPD}_{\text{UCB}}^{s} \]

\[\text{CRPD}_{\text{UCB}}^{s} = \text{BRT} \times \min(|\text{UCB}(s)|, n) \]

\times = hit

\bigcirc = miss

P

Cache Content: $[A, B, C, D]$

n = associativity

BRT = Block Reload Time
Evicting Cache Blocks
[Tomiyama & Dutt, 2000]

Definition (Evicting Cache Blocks (ECB))

A memory block of the preempting task is called an evicting cache block, if it may be accessed during the execution of the preempting task.

\[
\text{Cache Content: } [A, B, C, D] \quad \Rightarrow \quad \text{Cache Content: } [X, Y, Z, D]
\]

- \(\bullet \) = additional miss due to preemption (CRPD)

\[
\text{CRPD}^s_{\text{ECB}} = \begin{cases}
0 & \text{if } \text{ECB}(s) = \emptyset \\
\text{BRT} \times n & \text{otherwise}
\end{cases}
\]
Impact of the preempting task on the preempted task

CRPD (using UCB and ECB)

$$\text{CRPD}_{\text{UCB}\&\text{ECB}} = \sum_{s=1}^{c} \min(\text{CRPD}_{\text{UCB}}^{s}, \text{CRPD}_{\text{ECB}}^{s})$$
Impact of the preemtting task on the preempted task (example)

ECBs = \{e\}

\begin{align*}
[c, b, a, x] & \xrightarrow{a} [a, c, b, x] \xrightarrow{b} [b, a, c, x] \xrightarrow{c} [c, b, a, x] \\
[e, c, b, a] & \xrightarrow{a} [a, e, c, b] \xrightarrow{b} [b, a, e, c] \xrightarrow{c} [c, b, a, e]
\end{align*}

no miss

\begin{align*}
[c, b, a, x] & \xrightarrow{a} [a, c, b, x] \xrightarrow{b} [b, a, c, x] \xrightarrow{c} [c, b, a, x] \\
[e, c, b, a] & \xrightarrow{a} [a, e, c, b] \xrightarrow{b} [b, a, e, c] \xrightarrow{c} [c, b, a, e]
\end{align*}

no miss

- CRPD_{UCB} \Rightarrow |UCB| = 3
- CRPD_{ECB} \Rightarrow n = 4
- CRPD_{UCB\&ECB} = \min(CRPD_{UCB}, CRPD_{ECB}) \Rightarrow 3
 - Overestimation: number of additional misses\(= 0 < 3\)

Why?
- |ECB| to evict a UCB = 2
- but, |ECB| = 1
- One single ECB is not sufficient to evict a UCB
Refinement

Determining \max_{ECB} s.t. no additional cache miss occur

$m \in UCB$

m is 4-resilient ($\text{res}(m) = 4$)

\[
\begin{align*}
 m &\quad [m, _, _, _, _, _, _, _]
\end{align*}
\]

\[
\begin{align*}
 a_1 &\quad [a_3, a_2, a_1, m, _, _, _, _]
\end{align*}
\]

\[
\begin{align*}
 a_2 &\quad [m, a_3, a_2, a_1, _, _, _, _]
\end{align*}
\]

\[
\begin{align*}
 a_3 &\quad [m, a_3, a_2, a_1, _, _, _, _]
\end{align*}
\]
Resilience analysis

Definition (Resilience)

The resilience \(\text{res}_P(m) \) of memory block \(m \) at program point \(P \) is the greatest \(l \), such that all possible next accesses to \(m \),

a) that would be hits without preemption,

b) would still be hits in case of a preemption with \(l \) accesses at \(P \).

\[m \in \text{UCB} \]
\[\text{res}(m) = 4 \]

If \(|\text{ECB}| \leq l \) then the UCB is not evicted.
CRPD using resilience

CRPD (combining UCB and ECB by using resilience)

\[CRPD \leq BRT \times \left| \left\{ m \mid \text{res}(m) = \left| \text{ECB} \right| \right\} \right| \]

blocks contributing to CRPD

UCB \setminus \{m \mid \text{useful} \}

remain useful
CRPD using resilience - example

- $|ECB| = 1$
- $res(a) = res(b) = res(c) = 1$
- $CRPD_{\text{UCB}&\text{ECB}}^{\text{res}} = \text{BRT} \times |UCB \setminus \{m \mid res(m) = |ECB| \}| = 0$
- Instead of: $CRPD_{\text{UCB}&\text{ECB}} = min(CRPD_{\text{UCB}}, CRPD_{\text{ECB}}) = 3 \times \text{BRT}$
Evaluation Setting

- Cachesize 8KB
- 8 ways
- 32 sets
- linesize 32 bytes
- LRU caches
- Testcases: Mälardalen benchmark suite:
Evaluation Benchmarks

<table>
<thead>
<tr>
<th>Task</th>
<th>Code Size</th>
<th>Cache Util.</th>
<th>UCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>minmax</td>
<td>608B</td>
<td>7.4%</td>
<td>4</td>
</tr>
<tr>
<td>insertsort</td>
<td>384B</td>
<td>4.7%</td>
<td>5</td>
</tr>
<tr>
<td>fibcall</td>
<td>256B</td>
<td>3.1%</td>
<td>5</td>
</tr>
<tr>
<td>fac</td>
<td>256B</td>
<td>3.1%</td>
<td>6</td>
</tr>
<tr>
<td>bs</td>
<td>320B</td>
<td>3.9%</td>
<td>8</td>
</tr>
<tr>
<td>bsort100</td>
<td>544B</td>
<td>6.6%</td>
<td>10</td>
</tr>
<tr>
<td>ns</td>
<td>576B</td>
<td>7%</td>
<td>11</td>
</tr>
<tr>
<td>matmult</td>
<td>864B</td>
<td>10.5%</td>
<td>12</td>
</tr>
<tr>
<td>fir</td>
<td>928B</td>
<td>11.3%</td>
<td>22</td>
</tr>
<tr>
<td>crc</td>
<td>1216B</td>
<td>14.8%</td>
<td>35</td>
</tr>
<tr>
<td>select</td>
<td>1280B</td>
<td>15.6%</td>
<td>37</td>
</tr>
<tr>
<td>qsort-exam</td>
<td>1440B</td>
<td>17.6%</td>
<td>42</td>
</tr>
<tr>
<td>sqrt</td>
<td>3680B</td>
<td>44.9%</td>
<td>101</td>
</tr>
<tr>
<td>qurt</td>
<td>4160B</td>
<td>50.8%</td>
<td>118</td>
</tr>
</tbody>
</table>
Evaluation

preempted by fibcall (#ECBs = 8)

preempted by qurt (#ECBs = 121)

resilience tan UCB & ECB #UCBs
Conclusions

- UCB and ECB analyses:
 - pessimistic overapproximation of the CRPD

- Resilience analysis:
 - regain some precision
 - reduce pessimism

- Resilience analysis:
 - simple data-flow analyses
 - similar to UCB analysis for LRU
Further reading

- **Altmeyer, S. & Burguière, C. (2009).**

 In RTSS’96 p. 264, IEEE Computer Society.

- **Negi, H. S., Mitra, T. & Roychoudhury, A. (2003).**
 In CODES+ISSS’03 ACM.

- **Reineke, J. (2008).**
 Caches in WCET Analysis.

- **Staschulat, J. & Ernst, R. (2007).**
 ACM Trans. on Embedded Computing Sys. 6, 25.

- **Tan, Y. & Mooney, V. (2004).**
 In SCOPES’04 pp. 182–199.

- **Tomiyama, H. & Dutt, N. D. (2000).**
 In CODES’00 ACM.
/-resilience analysis

(a) 0-resilient

(b) m is not useful 2-resilient

m

m

m

m
CPRD using ECB: Pitfall

\[[b, a, 9, 8] \xrightarrow{8} [8, b, a, 9] \xrightarrow{9} [9, 8, b, a] \xrightarrow{a} [a, 9, 8, b] \xrightarrow{b} [b, a, 9, 8] \]

- 0 misses

\[[e, b, a, 9] \xrightarrow{8} [8, e, b, a] \xrightarrow{9} [9, 8, e, b] \xrightarrow{a} [a, 9, 8, e] \xrightarrow{b} [b, a, 9, 8] \]

- 4 misses

- \(|\text{UCB}(s)| = 4\)
- \(|\text{ECB}(s)| = 1\)
- \(n = 4\)
- number of additional misses = 4
Upper-bound on the CRPD - direct-mapped caches

- using UCB [Lee et al., 1996]:

\[\text{CRPD}_{\text{UCB}} = BRT \cdot \left| \{ s_i \mid \exists m \in \text{UCB} : m \mod c = s_i \} \right| \]

- using ECB [Tomiyama & Dutt, 2000]:

\[\text{CRPD}_{\text{ECB}} = BRT \cdot \left| \{ s_i \mid \exists m \in \text{ECB} : m \mod c = s_i \} \right| \]

- using UCB and ECB [Negi et al., 2003, Tan & Mooney, 2004]:

\[\text{CRPD}_{\text{UCB}\&\text{ECB}} = BRT \cdot \left| \{ s_i \mid \exists m \in \text{UCB} : m \mod c = s_i \right. \\
\left. \land \exists m' \in \text{ECB} : m' \mod c = s_i \} \right| \]
CRPD for FIFO: Pitfalls

ECBs

\[
\begin{align*}
[b, a] & \xrightarrow{a} [b, a] \xrightarrow{e^*} [e, b] b [e, b] \xrightarrow{c^*} [c, e] e [c, e] \quad 2 \text{ misses} \\
[x, b] & \xrightarrow{a^*} [a, x] e^*[e, a] b^* [b, e] c^*[c, b] e^*[e, c] \quad 5 \text{ misses}
\end{align*}
\]

- \(|UCB(s)| = 2\)
- \(|ECB(s)| = 1\)
- \(n = 2\)
- But: number of additional misses = 3
CRPD for PLRU: Pitfalls

ECBs = \{x, y\}

|UCB(s)| = 4
|ECB(s)| = 2
\(n = 4\)
But: number of additional misses = 5